

ТВЕРДОМЕР ПОРТАТИВНЫЙ ДИНАМИЧЕСКИЙ

константа тд

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ (ПАСПОРТ)

УАЛТ.171.000.00РЭ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.28.002.A № 35198

Срок действия до 23 июля 2019 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ **Твердомеры портативные динамические "Константа ТД"**

ИЗГОТОВИТЕЛЬ

ЗАО "КОНСТАНТА", г. Санкт-Петербург

РЕГИСТРАЦИОННЫЙ № 40555-09

ДОКУМЕНТ НА ПОВЕРКУ УАЛТ.171.000.09МП

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Свидетельство об утверждении типа продлено приказом Федерального агентства по техническому регулированию и метрологии от **23 июля 2014 г.** № **1114**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства Ф.В.Булыгин

У 2014 г.

№ 016098

Серия СИ

ичедильция Федеральная служба по аккредитации

000148

АТТЕСТАТ АККРЕДИТАЦИИ В ОБЛАСТИ ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

№ POCC RU.0001.310036

номер аттестата аккредитации)

Настоящий аттестат удостоверяет, что

Закрытое акционерное общество (паименование и ОГРН (ОГРНИП) юридического дина (индивидуального предприниметеля)

"KOHCTAHTA" OFPH 1037828021868

198097, г. Санкт-Петербург, ул. Маршала Говорова, д. 29, литер О

аккредитован(о) в области обеспечения единства измерений и официально признана его компетентность

выполнять работы и (или) оказывать услуги

по поверке средств измерений

Область аккредитации определена в приложении к настоящему аттестату и является его неотъемлемой частыю.

срок действия аттестата аккредитации с 19 июля 2012 г.

Руководитель (заместитель Руководителя)

M.II.

органа по аккредитации

(подпись)

С.В. Мигин

по 19 июля 2017 г.

Содержание

1 Техническое описание и работа	6
1.1 Назначение	
1.2 Технические характеристики	
1.2.1 Общие технические характеристики	6
1.2.2 Требования к контролируемому изделию	
1.3 Устройство и работа	
1.4 Маркировка	13
1.5 Упаковка	
2 Комплектность	13
3 Использование по назначению	14
3.1 Подготовка к использованию	14
3.1.1 Работа от аккумуляторных батарей и их заряд	14
3.1.2 Работа от батарей Alkaline	
3.1.3 Порядок работы	
3.1.4 Задание режимов работы прибора и параметров измерения	18
3.1.4.1 Выбор шкалы измерений для требуемой группы металлов	
3.1.4.2 Задание числа Ncp, ограничивающего количество усредняемых	
значений твердости с использованием кнопок быстрого доступа	19
3.1.4.3 Режим задания числа Ncp, ограничивающего количество	
усредняемых значений твердости	19
3.1.4.4 Режим включения-выключения подсветки	
индикатора	20
3.1.4.5 Режим очистки памяти преобразователя от записанных	
результатов измерений	20
3.1.4.6 Режим чтения результатов, записанных в память прибора с	
разбивкой на группы при проведении измерений	21
3.1.4.7 Режим задания верхнего допуска	21
3.1.4.8 Режим задания нижнего допуска	22
3.2 Основные функции, выполняемые прибором в режиме измерений	
3.3 Проведение измерений	23
3.3.1 Проведение единичного измерения	23
3.3.2 Проведение измерений с усреднением	
3.4 Одноточечная коррекция пользовательской калибровки	24
3.5 Двухточечная коррекция пользовательской калибровки	26
3.6 Запись результатов в память прибора с разбивкой на группы и	
их просмотр	29
3.6.1 Запись результата в память прибора в процессе измерений	29
3.6.2 Работа в режиме просмотра результатов измерений, записанных в	

память прибора с возможностью выдачи статистики по группе	31
3.7 Очистка памяти прибора от записанных результатов измерений	32
3.8 Проведение допускового контроля	32
3.9 Просмотр статистических результатов в пределах выборки	
вычисления среднего при проведении измерений твердости	32
3.10 Выключение прибора	32
3.11 Рекомендации по проведению измерений твердости изделий	
из высоколегированных сталей, чугунов, цветных металлов	33
3.11.1 Общие сведения	33
3.11.2 Требования к образцам для корректировки пользовательских	
калибровок прибора при измерениях твердости изделий из	
высоколегированных сталей, чугунов, цветных металлов	33
3.12 Рекомендации по проведению измерений твердости легких и	
тонких образцов	34
3.13 Рекомендации по проведению измерений твердости упрочненных	
поверхностных слоев и гальванических покрытий	35
3.14 Влияние на результаты измерений свойств поверхностных	
слоев изделия	35
3.15 Работа с компьютером IBM PC	36
3.15.1 Установка программы на жесткий диск	36
3.15.2 Передача результатов измерений в компьютер	37
4 Техническое обслуживание	38
4.1 Общие указания	38
4.2 Техническое обслуживание преобразователя	38
4.3 Указания мер безопасности	38
4.4 Указания по поверке	38
5 Ресурсы, сроки службы и хранения, гарантия изготовителя	38
6 Хранение	38
7 Транспортирование	39
8 Свидетельство о приемке	39

Настоящее руководство по эксплуатации предназначено для изучения твердомера портативного динамического Константа ТД (в дальнейшем прибора), изготовленного по документации УАЛТ.171.000.00.

Руководство по эксплуатации содержит описание конструкции, принцип действия, основные положения по эксплуатации, техническому обслуживанию и поверке прибора.

1 Техническое описание и работа

1.1 Назначение

1.1.1 Прибор предназначен для измерения твердости всех типов сталей (включая нержавеющие), чугунов, цветных металлов. Допускается применение прибора для измерения твердости других металлов, используя режим «одноточечная» или «двухточечная» калибровка на образцовых мерах твердости потребителя прибора.

1.1.2 Рабочие условия эксплуатации:

- температура окружающей среды от -20 до + 60 $^{\circ}$ C*;
- относительная влажность воздуха до 98% при + 35 °C.

1.2 Технические характеристики

1.2.1 Общие технические характеристики

1.2.1.1 Шкалы твердости:

- основные: HRC, HB, HV;

- дополнительные: HRA, HRB, HRN15, HRN30, HRN45, HRT15, HRT30, HRT45, HSA, HSD, σ_в (предел прочности)

^{*} При длительной эксплуатации при температуре ниже -5°C происходит замедление отображения информации на индикаторе, при этом сам прибор продолжает функционировать нормально.

1.2.1.2 Диапазон измерения твердости:

Таблица 1

Материалы	Шкала	Диапазон измерения твёрдости			
_	твёрдости				С
Сталь нелегированная,	σ _в , МПа	3701740	3701740	3701740	3701740
низколегированная,	НВ	75654	81646	90646	81694
литьевая	HV	751000	80950		811012
	HRC	2070	2168		2070
	HRA	6093			
	HRB	25100	37100	48100	
	HRN15	7094			
	HRN30	4086			
	HRN45	2078			
	HRT15	6293			
	HRT30	1582			
	HRT45	1072			
	HS	20100	3197		30102
Инструментальная	HV	80900	80905		98942
сталь	HRC	2070	2167		2067
Нержавеющая сталь	HB	85655			
	HV	85802			
	HRC	2062			
	HRB	45102			
Серый чугун	HB	90664		92326	
	HV	90698			
	HRC	2159			
Высокопрочный чугун	НВ	95686		127364	
	HV	96724			
	HRC	2060		1937	
Алюминиевые сплавы	HB	19165	20187	19168	21167
	HV	22193	21191		
	HRB	2485	2485	2886	2385
Латунь (медно-	НВ	40173			
цинковый сплав)	HRB	1495			
Бронза (медно-	HB	60300			
алюминиевый / сплав					
медного олова)					
Сварной медный сплав	HB	45315			

ВНИМАНИЕ: Для преобразователя типа G шкала Роквелла является справочной. Проводить измерения на образцах с твердостью более 59 HRC запрещено!

1.2.1.3 Предел основной допускаемой абсолютной погрешности измерения твердости стали нелегированной, низколегированной, литьевой по основным шкалам при вычислении среднего значения с числом замеров не менее 10 на мерах твердости первого разряда, не более

- по Бринеллю, HB, ± 10
- по Роквеллу, HRC, ± 1,5
- по Виккерсу, HV, ± 12
1.2.1.4 Предел основной допускаемой абсолютной погрешности
измерения твердости стали нелегированной, низколегированной, литьевой
по основным шкалам при вычислении среднего значения с числом
замеров не менее 5 на мерах твердости второго разряда, не более
- по Бринеллю (на мерах твердости МТБ-1), НВ:
в диапазоне (75150) НВ
в диапазоне (150300) НВ
в диапазоне (300650) НВ
- по Роквеллу (на мерах твердости MTP -1 или MTP-3), HRC2
- по Виккерсу (на мерах твердости МТВ-1), HV:
в диапазоне (240500) HV15
в диапазоне (500800) HV20
в диапазоне (800940) HV25
1.2.1.5 Число запоминаемых пользовательских калибровок по каждой
из:
- основных шкал
- дополнительных шкал1
Пользовательские калибровки, доступные для пользователя,
представляют собой поправочные коэффициенты к исходной
градуировочной характеристике, определяемые в процессе калибровки на
образцах продукции и автоматически записываемые в энергонезависимую
память преобразователя.
1.2.1.6 Число замеров для вычисления среднего значения по выбору
пользователя в диапазоне
1.2.1.7 Работа прибора может производиться при любом положении
преобразователя относительно горизонта. Угол наклона преобразователя
относительно горизонта определяется автоматически и высвечивается на
индикаторе после проведения замера вместе с результатами измерения.
1.2.1.8 Количество ячеек памяти результатов измерения
1.2.1.9 Число групп результатов при запоминании данных
измеренийдо 99
1.2.1.10 Связь с компьютером IBM PC по каналу связи USB 2.0.
1.2.1.11 Питание прибора – две сухих батареи ААА номинальным
напряжением 1,5 В или две аккумуляторных батереи ААА.
1.2.1.12 Время непрерывной работы от батарей типа Alkaline без
включенной полсветки инликатора час не менее 150

1.2.1.13 Время непрерывной работы от аккумуляторных батарей ААА
емкостью 850 мАч без включенной подсветки индикатора, час,
не менее
1.2.1.14 Прибор осуществляет контроль разряда батарей питания
прибора. При разряде батарей питания прибор выдает соответствующие
сообщения на индикатор.
1.2.1.15 Прибор обеспечивает индикацию при понижении напряжения
питания до, В
1.2.1.16 При выключении прибор автоматически осуществляет
запоминание в энергонезависимой памяти преобразователя выбранной
шкалы, группы металлов, номера и параметров пользовательской
калибровки, а также режимов проведения измерений.
1.2.1.17 Прибор автоматически выключается в случае, если в течение
1,5 минут не проводятся измерения и не используется клавиатура, либо в
течение 12 секунд, если не был подключен преобразователь.
1.2.1.18 Время одного измерения, с, не более:
1.2.1.19 Диаметр шаровидного индентора, мм
1.2.1.20 Твердость материала индентора, HV
1.2.1.21 Тип корпуса прибора пластиковый
1.2.1.22 Габаритные размеры, мм, не более:
блока обработки информации120x60x25
преобразователей D
преобразователей D+15
преобразователя DC
преобразователя С
преобразователя G
преобразователя DL
1.2.1.23 Масса, кг, не более
блока обработки информации
преобразователей D
преобразователей D+15
преобразователя DC0,1
преобразователя С
преобразователя G
преобразователя DL0,13

1.2.2 Требования к контролируемому изделию 1.2.2.1 Минимальная масса контролируемого изделия, кг, не менее для преобразователей D, DC
для преобразователей D, DC
для преобразователя С
для преобразователя С
для преобразователя G
1.2.2.2 Минимальная толщина контролируемого участка изделия, мм, не менее для преобразователей D, DC, DL, D+15
менее для преобразователей D, DC, DL, D+15
для преобразователя С
для преобразователя С
для преобразователя G
1.2.2.3 Шероховатость поверхности Ra, на которой производится измерение, мкм, не более для преобразователей D, DC, DL, D+15
измерение, мкм, не более для преобразователей D, DC, DL, D+15
для преобразователей D, DC, DL, D+15
для преобразователя С
для преобразователя G
1.2.2.4 Минимальная толщина закаленных слоев, мм, не менее
1.2.2.5 Минимальный радиус выпуклой цилиндрической контролируемой поверхности, мм, не менее
контролируемой поверхности, мм, не менее
с использованием специальных насадок) Для обеспечения перпендикулярности оси преобразователя к криволинейной поверхности необходимо использовать специализированные насадки. Для проведения измерений на изделиях с меньшими радиусами использовать специализированные приспособления. 1.2.2.6 Минимальный радиус вогнутой цилиндрической
Для обеспечения перпендикулярности оси преобразователя к криволинейной поверхности необходимо использовать специализированные насадки. Для проведения измерений на изделиях с меньшими радиусами использовать специализированные приспособления. 1.2.2.6 Минимальный радиус вогнутой цилиндрической
криволинейной поверхности необходимо использовать специализированные насадки. Для проведения измерений на изделиях с меньшими радиусами использовать специализированные приспособления. 1.2.2.6 Минимальный радиус вогнутой цилиндрической
специализированные насадки. Для проведения измерений на изделиях с меньшими радиусами использовать специализированные приспособления. 1.2.2.6 Минимальный радиус вогнутой цилиндрической
Для проведения измерений на изделиях с меньшими радиусами использовать специализированные приспособления. 1.2.2.6 Минимальный радиус вогнутой цилиндрической
использовать специализированные приспособления. 1.2.2.6 Минимальный радиус вогнутой цилиндрической
1.2.2.6 Минимальный радиус вогнутой цилиндрической
контролируемой поверхности мм не менее 30 (11 тип DL или
mempermip y emen mesephineerin, min, me memee
с использованием специальных насадок)
Для обеспечения перпендикулярности оси преобразователя к
криволинейной поверхности необходимо использовать
специализированные насадки.
1.2.2.7 Диаметры отпечатков на изделиях в миллиметрах приведены в
таблице 2.

* и менее при использовании рекомендаций по проведению измерений твердости легких и тонких образцов

Таблица 2

Тип преобразователя	100HB	187HB	400HB	62HRСэ
			(42,5HRC)	
D, , DC	0,68	0,58	0,50	0,46
D+15, DL	0,72	0,66	0,58	0,49
G	1,36	1,17	1,08	-
С	0,52	0,46	0,38	0,27

1.2.2.8 Глубины отпечатков на изделиях в миллиметрах приведены в таблице 3.

Таблица 3

Тип преобразователя	100HB	187HB	400HB	62HRСэ
_ -			(42,5HRC)	
D, DC	0,039	0,028	0,021	0,018
D+15, DL	0,044	0,037	0,028	0,020
G	0,094	0,070	0,059	_
С	0,023	0,018	0,012	0,006

1.2.2.9 Рабочая поверхность контролируемого изделия и наконечника индентора должны быть чистыми и обезжирены спиртом.

1.3 Устройство и работа

В основу принципа работы прибора заложен динамический способ измерения твердости. Измерения сигналов и обработка результатов измерения производится встроенным микропроцессором с интегральным аналого-цифровым преобразователем. Отображение результатов осуществляется на жидкокристаллическом индикаторе.

Внешний вид блока обработки информации показан на рисунке 1.

Рисунок 1. Блок обработки информации

Преобразователь комплектуется двумя насадками:

- основной, для работы на плоских поверхностях (рисунок 2).

Рисунок 2. Вид преобразователя с плоской насадкой

- специализированной конусной, для работы в узких местах и на вогнутых поверхностях (рисунок 3).

Рисунок 3. Вид преобразователя со специализированной конусной насадкой

1.4 Маркировка

На лицевую панель прибора наносятся:

- условное обозначение прибора с товарным знаком предприятия-изготовителя;
 - знак утверждения типа.

На заднюю крышку прибора наносятся заводской номер и год выпуска.

1.5 Упаковка

Блок обработки информации, преобразователь помещаются в футляр для хранения и транспортирования.

2 Комплектность

- 2.1 Блок обработки информации 1 шт.
- **2.2** Преобразователь типа D*

Преобразователь типа D+15**

Преобразователь типа DC**

Преобразователь типа С**

Преобразователь типа G**

Преобразователь типа DL**

- **2.3** Толкатель 1 шт. (только для преобразователя типа DC)
- 2.4 Зарядное устройство 1 шт.
- 2.5 Батарея аккумуляторная NіМН размер ААА 4 шт.
- 2.6 Руководство по эксплуатации с методикой поверки 1 шт.
- **2.7** Футляр 1 шт.
- **2.8** Кабель связи с ПК по интерфейсу USB 1 шт.
- 2.9 Диск с драйверами и ПО для ПК 1 шт.

^{*}Базовая комплектация

^{**}Прибор может быть укомплектован по согласованию с заказчиком любым количеством преобразователей.

- 3 Использование по назначению
- 3.1 Подготовка к использованию
- 3.1.1 Работа от аккумуляторных батарей и их заряд
- **3.1.1.1** Подключить преобразователь к разъему на торцевой панели блока обработки информации.
- **3.1.1.2** Установить аккумуляторные батареи в батарейный отсек, соблюдая полярность контактов. Если батареи имеют заряд достаточный для работы, то прибор при установке аккумуляторных батарей включится, выдав короткий звуковой сигнал. Если аккумуляторные батареи были установлены ранее, то необходимо включить прибор нажатием кнопки «**РЕЖИМ/ВКЛ**».

В случае если аккумуляторные батареи разряжены, выдается сообщение

ПОДСВЕТКА ВЫКЛЮЧЕНА БАТАРЕЯ РАЗРЯЖЕНА

на две секунды с одновременным коротким звуковым сигналом.

Если преобразователь подключен к блоку обработки информации, то такое сообщение выдается один раз в 20 секунд, при этом работа с прибором может продолжаться.

Если преобразователь не подключен к блоку обработки информации и при этом не производится никаких действий с клавиатурой, то прибор автоматически выключится по истечение 12 секунд и повторная выдача сообщения о разряде батарей не производится.

Если аккумуляторные батареи разряжены до уровня, недопустимого для работы прибора, выдается сообщение

ЗАМЕНИТЬ БАТАРЕЮ!

на две секунды с одновременным коротким звуковым сигналом, после чего выдается сообщение

Прибор выключен

с одновременным длинным звуковым сигналом и прибор выключается. Это свидетельствует о необходимости проведения заряда аккумуляторных батарей.

При работе прибора в случае выдачи первого сообщения измерения могут проводиться в течение непродолжительного времени до выдачи прибором второго сообщения, запрещающего работу.

- **3.1.1.3** Для заряда аккумуляторных батарей их следует извлечь из батарейного отсека (можно не дожидаясь выключения прибора) и произвести их заряд в соответствии с п.3.1.1.4.
 - 3.1.1.4 Заряд аккумуляторных батарей.

Для заряда аккумуляторных батарей необходимо:

- подсоединить аккумуляторные батареи к клеммам зарядного устройства;
 - включить зарядное устройство в сеть.

Время полного заряда аккумуляторных батарей определяется зарядным устройством. Запрещается оставлять зарядное устройство во время заряда без наблюдения. Для исключения выхода из строя аккумуляторных батарей нельзя выполнять заряд частично (не полностью). Для исключения выхода из строя аккумуляторных батарей при длительном хранении необходимо проводить их заряд с интервалом времени порядка 2 мес., даже если они не применялись.

3.1.2 Работа от батарей Alkaline

- **3.1.2.1** Подключить преобразователь к разъему на торцевой панели блока обработки информации
- **3.1.2.2** Установить батареи в батарейный отсек, соблюдая полярность контактов. Если батареи имеют заряд достаточный для работы, то прибор при установке батарей включится, выдав короткий звуковой сигнал. Если батареи были установлены ранее, то необходимо включить прибор нажатием кнопки «**РЕЖИМ/ВКЛ**».

В случае если аккумуляторные батареи разряжены, выдается сообщение

БАТАРЕЯ РАЗРЯЖЕНА

ПОДСВЕТКА

на две секунды с одновременным коротким звуковым сигналом.

Если преобразователь подключен к блоку обработки информации, то такое сообщение выдается один раз в 20 секунд, при этом работа с прибором может продолжаться.

Если преобразователь не подключен к блоку обработки информации и при этом не производится никаких действий с клавиатурой, то прибор автоматически выключится по истечение 12 секунд и повторная выдача сообщения о разряде батарей не производится.

Если батареи разряжены до уровня, недопустимого для работы прибора, выдается сообщение

ЗАМЕНИТЬ БАТАРЕЮ!

на две секунды с одновременным коротким звуковым сигналом, после чего выдается сообщение

Прибор выключен

с одновременным длинным звуковым сигналом и прибор выключается. Это свидетельствует о необходимости замены батарей.

При работе прибора в случае выдачи первого сообщения измерения могут проводиться в течение непродолжительного времени до выдачи прибором второго сообщения, запрещающего работу.

3.1.3 Порядок работы

3.1.3.1 Подсоединить преобразователь к разъему на торцевой панели блока обработки информации.

3.1.3.2 Подготовить прибор к работе в соответствии с п.3.1.1 или 3.1.2 и включить его нажатием кнопки «**РЕЖИМ/ВКЛ**». После нажатия данной кнопки раздается короткий звуковой сигнал и на индикатор выдается сообщение

Константа Т ver.6.6.0

Далее на индикатор выдается сообщение о расположении информации на индикаторе при проведении измерений

Среднее – местоположение текущего среднего значения твердости по **nn** измерений, число которых также отображается на индикаторе;

N=XX – число, ограничивающее количество усредняемых значений, устанавливается в соответствующем меню;

xnn – номер последнего (единичного) результата измерения твердости.

Единичное - местоположение последнего (единичного) результата измерения твердости;

Шкала — местоположение названия шкалы измерения (выводится сообщение о выбранной шкале измерения: **HRC** (по Роквеллу), **HB** (по Бринеллю) или **HV** (по Виккерсу) или другим шкалам);

Материал — группа металлов и номер пользовательской калибровки (может быть от K1 до K3) для выбранной шкалы, сохраняемой в памяти. При поставке пользовательские калибровки K1 — K3 соответствуют градуировочным характеристикам группы металлов для выбранной шкалы.

lacktriangledown – положение преобразователя относительно горизонта.

После выдачи указанных выше информационных сообщений прибор готов к измерениям и на индикатор будет выдано сообщение

с соответствующими шкалой измерения, группой металлов, номером пользовательской калибровки и числом, ограничивающим количество усредняемых значений, установленными при поставке (при первом включении) или при выключении прибора после проведения измерений.

Если не требуется менять режимы работы прибора, то можно переходить к измерению твердости в соответствии с п.п. 3.2- 3.3.

3.1.4 Задание режимов работы прибора и параметров измерения

После включения прибор находится в режиме измерений.

Изменение режимов работы прибора производится с использованием кнопок быстрого доступа или кнопки «РЕЖИМ».

При выключении прибора выбранные шкала, группа металлов и номер пользовательской калибровки автоматически сохраняются в памяти преобразователя.

При последовательном нажатии кнопки «РЕЖИМ» на индикаторе будут появляться заставки изменения режимов работы и параметров измерения.

При соответствующем числе раз нажатия кнопки «**РЕЖИМ**» прибор вновь войдет в режим измерения с измененными, при необходимости, параметрами.

3.1.4.1 Выбор шкалы измерений для требуемой группы металлов

Для выбора шкалы измерений требуемой группы металлов с использованием кнопок быстрого доступа необходимо нажать кнопку «ШКАЛА», после чего на индикатор будет выдано сообщение

Курсор ▶ указывает на выбранные шкалу, группу металлов и номер пользовательской калибровки. С использованием кнопок пользовательской выбрать необходимую шкалу с требуемым номером пользовательской калибровки. После выбора шкалы измерений (указывается курсором ▶) возврат в измерительный режим осуществляется нажатием кнопки «ШКАЛА» или кнопки «РЕЖИМ», а также по истечении пяти секунд после последнего нажатия одной из кнопок пользовательской из кнопок пользовательской калибровки.

При последовательном нажатии кнопки «РЕЖИМ» на индикаторе будут появляться заставки изменения режимов работы и параметров измерения.

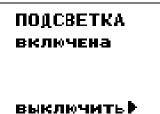
3.1.4.2 Задание числа Ncp, ограничивающего количество усредняемых значений твердости с использованием кнопок быстрого доступа

Для задания **Ncp** с использованием кнопок быстрого доступа необходимо нажать кнопку «**CБPOC**/ **Ncp**» и удерживать ее в нажатом положении до появления сообщения, например,

Задание **Ncp** производится с использованием кнопок п- и **P**_{n+}.

После окончания задания **Ncp** возврат в измерительный режим осуществляется нажатием кнопки «**CБРОС**/ **Ncp**», а также по истечение пяти секунд после последнего нажатия одной из кнопок при вышения.

3.1.4.3 Режим задания числа Ncp, ограничивающего количество усредняемых значений твердости


Для выбора данного режима необходимо нажать соответствующее число раз кнопку «РЕЖИМ» до появления сообщения, например,

Задание **Ncp** производится с использованием кнопок и после окончания задания **Ncp** для выхода из данного режима необходимо соответствующее число раз нажать кнопку «**PEЖИМ**» до входа в измерительный режим. При выключении прибора заданное **Ncp** автоматически сохраняется в энергонезависимой памяти преобразователя.

3.1.4.4 Режим включения-выключения подсветки индикатора

Для выбора данного режима необходимо нажать соответствующее число раз кнопку «РЕЖИМ» до появления сообщения

Для включения/выключения подсветки индикатора необходимо нажать на кнопку •п. Рядом с кнопкой на индикаторе отображается название действия, которое будет выполнено при ее нажатии (**ВКЛ** или **ВЫКЛ**).

Нажатие кнопки включает или, соответственно, выключает подсветку индикатора, о чем выдается сообщение. При выключении прибора выбранный режим работы подсветки автоматически сохраняется в памяти прибора.

3.1.4.5 Режим очистки памяти прибора от записанных результатов измерений

Для выбора данного режима необходимо нажать соответствующее число раз кнопку «РЕЖИМ» до появления сообщения

ОЧИСТКА ПАМЯТИ! Записано **5** Свободно **994** Очистить **•**

Для очистки памяти прибора от результатов измерений необходимо нажать кнопку ►₁. После нажатия кнопки на индикатор кратковременно будет выдано сообщение об очистке памяти

ПАМЯТЬ ОЧИЩЕНА!

3.1.4.6 Режим чтения результатов, записанных в память прибора с разбивкой на группы при проведении измерений (подробно описан в п. 3.6.2)

Для выбора данного режима необходимо нажать соответствующее число раз кнопку «РЕЖИМ» до появления сообщения

ПРОСМОТР ПАМЯТИ

55.3 HRC

Номер 001/003 4 D

Гечппа 001/001 H1 H2

3.1.4.7 Режим задания верхнего допуска

Для выбора данного режима необходимо нажать соответствующее число раз кнопку «РЕЖИМ» до появления сообщения

допуск верхний 53.5 HRC [СБРОС] - Выкл

Задание допуска верхнего производится с использованием кнопок п- и

Выключение режима контроля верхнего допуска производится нажатием кнопки «СБРОС». По нажатию кнопки «СБРОС» появляется сообщение Выкл, маскирующее заданное значение верхнего допуска. При выключении прибора заданное значение допуска верхнего автоматически сохраняется в памяти прибора.

3.1.4.8 Режим задания нижнего допуска

Для выбора данного режима необходимо нажать соответствующее число раз кнопку «РЕЖИМ» до появления сообщения

Задание нижнего допуска производится с использованием кнопок п-

Выключение режима контроля нижнего допуска производится нажатием кнопки «СБРОС». По нажатию кнопки «СБРОС» появляется сообщение Выкл, маскирующее заданное значение нижнего допуска. При выключении прибора заданное значение допуска нижнего автоматически сохраняется в памяти прибора.

3.2 Основные функции, выполняемые прибором в режиме измерений:

- проведение единичного измерения твердости;
- проведение измерений твердости с усреднением;
- сброс текущего среднего и последнего (единичного) результатов измерения твердости при необходимости для начала новой серии измерений с усреднением;
- проведение коррекции пользовательской калибровки для выбранной шкалы на конкретной продукции (деталях) с сохранением полученных параметров пользовательской калибровки под выбранным номером Кі;
- сброс параметров пользовательской калибровки возврат к исходной градуировочной характеристике для выбранной шкалы и группы металлов;
- запись текущего среднего значения твердости в память прибора с присвоением номера в открытой группе.

3.3 Проведение измерений

3.3.1 Проведение единичного измерения

- **3.3.1.1** Установить преобразователь на изделие нормально к поверхности и прижать его торцевой плоскостью, не допуская покачивания.
- **3.3.1.2** Взвести пружинный механизм преобразователя в рабочее положение, для чего:
- а) Для преобразователей D, D+15, G, C, DL: Сдвинуть цилиндрическую ручку вниз до щелчка, свидетельствующего о захвате бойка захватным механизмом. Плавно отпустить цилиндрическую ручку, не допуская срыва бойка.
- б) Для преобразователя DC: Вставить взводной стержень (поставляемый в комплекте с преобразователем DC) в отверстие на торцевой части преобразователя до щелчка, свидетельствующего о захвате бойка захватным механизмом. Плавно вынуть взводной стержень.
- **3.3.1.3** Нажать спусковую кнопку преобразователя, при этом боек под действием взведенной ранее пружины совершит удар по поверхности контролируемого изделия.

Для исключения существенной дополнительной погрешности, при нажатии спусковой кнопки, цилиндрическая ручка взвода бойка не должна перемещаться вниз.

3.3.1.4 Прибор произведет измерение, погасит индикатор примерно на 0,2 с и отобразит значение твердости контролируемого изделия на индикаторе. Данный результат измерения будет отображаться на индикаторе до проведения следующего измерения в соответствии с описанным выше. Не следует изменять положение преобразователя в пространстве, сразу после удара бойка (в течении 0,5-1 с).

3.3.2 Проведение измерений с усреднением

- **3.3.2.1** Прибор позволяет проводить измерения с числом усреднений до 20 в режиме автоматического усреднения. Автоматический режим усреднения заключается в том, что после проведения каждого единичного измерения прибор по умолчанию включает данный результат в набор усредняемых значений.
- **3.3.2.2** Перед началом измерений при необходимости задать число ограничивающее количество усредняемых значений твердости **Ncp**, по которому определяется среднее значение твердости, в соответствии с п. 3.1.4.2 или 3.1.4.3.

- **3.3.2.3** Произвести сброс текущего среднего и последнего (единичного) результатов измерения твердости при необходимости для начала новой серии измерений с усреднением кратковременным нажатием кнопки «**CБРОС**».
- **3.3.2.4** В процессе измерений в каждой точке, начиная с первой, последовательно провести измерение в соответствии с п. 3.3.1. После проведения очередного измерения на индикатор выдается последний (единичный) результат измерения твердости с его номером **nn**, среднее значение твердости по **nn** измерениям.

3.3.2.5 При начале контроля следующего изделия или нового участка необходимо нажать кнопку «СБРОС».

3.4 Одноточечная коррекция пользовательской калибровки

В измерительном режиме возможна коррекция выбранной пользовательской калибровки в одной точке для уменьшения аддитивной (постоянной) составляющей погрешности измерения. Коррекция может производится как на мерах твердости, так и на конкретном образце продукции (детали). Одноточечная коррекция на конкретном образце продукции (детали) применяется в случае, если механические свойства материала продукции отличаются от свойств группы металлов, для которых выбрана шкала, либо в случае несоответствия продукции разделу «требования к контролируемому изделию» (см. п. 1.2.2), а измерения проводятся в узком диапазоне относительно точки, в которой выполняется коррекция. Для получения корректных результатов обязательно учесть требования и рекомендации п.п. 3.11 – 3.14.

Для проведения коррекции необходимо:

- предварительно взять изделие или отдельный образец, близкий по характеристикам к контролируемым изделиям и произвести измерение твердости **Нпи** твердомером прямого измерения, усреднив не менее 5 измерений;
- выбрать шкалу измерения (см. п. 3.1.4.1) и номер пользовательской калибровки, которая будет корректироваться и сохраняться после этого в памяти преобразователя;

- вернуться к исходной градуировочной характеристике - в измерительном режиме нажать вместе кнопки «Н1» и «Н2» сектора "КАЛИБРОВКА" и удерживать до появления сообщения

Сброс калибровки возврат к заводской

- произвести прибором измерение твердости **Нпр** на том же участке с усреднением с числом замеров не менее 5;
- нажать кнопку «**H1**» сектора «**КАЛИБРОВКА**», при этом на индикатор будет выдано сообщение о вычисленном **Нпр** и назначении кнопок п- и **Р**п+.

- с использованием кнопок погрешностью, не превышающей требуемую. При нажатии и удержании в этом положении кнопки показания на индикаторе будут увеличиваться, а при нажатии и удержании в этом положении кнопки по уменьшаться. Таким образом, можно добиться соответствия **Нпи** и **Нпр**.

При таком виде коррекции (в одной точке) в процессе вычисления твердости вся характеристика смещается на величину аддитивной (постоянной) составляющей погрешности $\Delta Ha = (Hnp - Hnu)$. Введение данной поправки уменьшает влияние постоянной составляющей погрешности измерения.

После того, как осуществлена коррекция пользовательской калибровки преобразователя на выбранном образце детали следует нажать на кнопку «Н1» для возврата в измерительный режим. Для возврата в измерительный режим также достаточно просто произвести измерение.

Пользовательская калибровка автоматически запоминается в памяти преобразователя с выбранным номером и сохраняется после выключения прибора и отключения преобразователя.

При ошибочных действиях во время одноточечной и двухточечной коррекции пользовательской калибровки, вызвавших неверную работу прибора, для возврата к исходной градуировочной характеристике необходимо в измерительном режиме нажать вместе кнопки «Н1» и «Н2» сектора "КАЛИБРОВКА" и удерживать их до появления сообщения

Сброс калибровки возврат к заводской

3.5 Двухточечная коррекция пользовательской калибровки

В измерительном режиме возможна двухточечная коррекция выбранной пользовательской калибровки для уменьшения аддитивной (постоянной) и мультипликативной (переменной) составляющих погрешности измерения. Двухточечная коррекция на конкретных образцах продукции (деталях) применяется в случае, если механические свойства материала продукции отличаются от свойств группы металлов, для которых выбрана шкала, либо в случае несоответствия продукции разделу «требования к контролируемому изделию» (см. п. 1.2.2), а измерения проводятся в широком диапазоне. Для получения корректных результатов обязательно учесть требования и рекомендации следующих п.п. 3.11 – 3. 14.

Для проведения коррекции необходимо:

- **3.5.1** Подготовить два образца изделия (детали) исходя из следующих условий:
- величина твердости первого **Hmin** образца должна соответствовать нижнему значению величины твердости изделий, подлежащих контролю;
- величина твердости второго образца **Hmax** должна соответствовать верхнему значению величины твердости изделий, подлежащих контролю;
- произвести измерение твердости первого **Hmin** и второго **Hmax** образцов твердомером прямого измерения.
- **3.5.2** Выбрать шкалу измерения (см п. 3.1.4.1) и номер пользовательской калибровки, которая будет корректироваться и сохраняться после этого в памяти преобразователя;
- 3.5.3 Вернуться к исходной градуировочной характеристике в измерительном режиме нажать вместе кнопки «Н1» и «Н2» сектора "КАЛИБРОВКА" и удерживать их до появления сообщения

Сброс калибровки возврат к заводской

- **3.5.4** Произвести коррекцию пользовательской калибровки на образце **Hmin** (первом образце) в соответствии с п. 3.4 для устранения аддитивной (постоянной) составляющей погрешности измерения.
- **3.5.5** Провести коррекцию пользовательской калибровки (чувствительности) прибора на **Hmax** (втором образце):
- произвести прибором измерение твердости **Нпр** на втором образце с твердостью **Нтах** с усреднением с числом замеров не менее 5;
- нажать кнопку «**H2**» сектора «**КАЛИБРОВКА**», при этом в случае правильных действий на индикатор будет выдано сообщение о вычисленном **Нпр** и назначении кнопок п-

Сообщения, выдаваемые при неправильных действиях:

А) В случае недопустимой близости Нтіп и Нтах на индикатор выдается сообщение

Н1 и Н2 слишком близки

Б) В случае попытки проведения коррекции пользовательской калибровки (чувствительности) прибора на Нтах (втором образце) предварительно не выполнив коррекцию пользовательской калибровки на образце Hmin (первом образце) на индикатор будет выдано сообщение

Проведите калибровку в точке Н1

- **3.5.6** После выполнения коррекции на втором образце с твердостью **Нтах** определяется мультипликативный коэффициент a смещения характеристики для вычисления мультипликативной (переменной) поправки $\Delta Hm = a \cdot (Hnp Hmin)$ в диапазоне измерения от Hmin до Hmax. Введение данной поправки уменьшает влияние мультипликативной (переменной) составляющей погрешности измерения.
- **3.5.7** После того, как осуществлена коррекция пользовательской калибровки преобразователя на выбранных образцах изделий (деталей) следует нажать на кнопку **«Н2»** для возврата в измерительный режим. Для возврата в измерительный режим также достаточно просто произвести измерение.

Пользовательская калибровка автоматически запоминается в памяти преобразователя с выбранным номером и сохраняется после выключения прибора и отключения преобразователя.

При ошибочных действиях во время одноточечной и двухточечной коррекции пользовательской калибровки, вызвавших неверную работу прибора, для возврата к исходной градуировочной характеристике необходимо в измерительном режиме нажать вместе кнопки «Н1» и «Н2» сектора "КАЛИБРОВКА" и удерживать до появления сообщения

Сброс калибровки возврат к заводской

3.6 Запись результатов в память прибора с разбивкой на группы и их просмотр

В процессе проведения измерений прибор позволяет производить запись средних результатов измерения в память прибора с разбивкой на группы с возможностью последующего просмотра.

Результаты измерений записываются с присвоением им номера с разбиением по группам изделий (деталей) с присвоением каждой группе номера. При этом:

- в память записывается среднее значения твердости, отображаемое на индикаторе;
- номера результатов измерений в переделах каждой из групп начинаются с единицы;
 - группы записываются последовательно начиная с первой;
 - при стирании результатов стирается содержимое всех групп сразу;
 - максимальное количество групп 99;
 - число результатов в группе произвольное.

В случае первого включения прибор автоматически присваивает первой группе номер $\Gamma 1$. При очистке памяти прибора от записанных результатов также происходит автоматическое присвоение первой группе номера $\Gamma 1$.

3.6.1 Запись результата в память в процессе измерений

Для записи среднего результата измерения, отображаемого на индикаторе, в очередную ячейку памяти необходимо нажать на кнопку При этом на индикатор кратковременно будет выдан номер очередной ячейки памяти **XXX**, в которую записан средний результат измерения и номер открытой группы **УУ**

 которую записан (заменен) средний результат измерения и номер открытой группы $\mathbf{Y}\mathbf{Y}$

Для открытия новой группы с присвоением ей номера следует нажать на кнопку «**ГРУППА**», при этом будет открыта новая группа **УУ** с увеличением номера на единицу и на индикатор будет выдано сообщение

Открыта новая группа N 05

Прибор не допускает наличия пустых групп (групп в которых не были записаны результаты) и запрещает открытие новой группы в случае, если в уже открытую не были записаны результаты измерения. В этом случае при попытке открытия новой группы на индикатор будет выдано сообщение

Группа уже открыта!

Прибор не допускает запись в одну группу значений твердости разных шкал. В этом случае при попытке записи очередного результата измерения в ячейку памяти на индикатор будет выдано сообщение

3.6.2 Работа в режиме просмотра результатов измерений, записанных в память прибора с возможностью выдачи статистики по группе

Выбрать данный режим последовательным нажатием кнопки «РЕЖИМ» до появления сообщения

При этом на индикаторе отображаются шкала, номер ячейки памяти **XXX/YYY**, где **XXX** текущий номер измерения, а **YYY** общее количество измерений в данной группе, номер группы **XXX/YYY**, где **XXX** номер текущей группы, **YYY** общее количество групп в которых произведены измерения.

С помощью кнопок при можно изменять номер ячейки памяти в пределах выбранной группы, а с помощью кнопок «**H1**» и «**H2**» можно менять номер просматриваемой группы.

Для просмотра статистики по выбранной группе результатов измерения необходимо нажать и удерживать кнопку «**CTAT**». При этом в течение времени удержания кнопки на индикатор будет выдаваться сообщение

СТАТИСТИКА				
Макс Мин Средн СКО ста	125 97 109 11 аль К2	HB HB HB		

о максимальном **Макс**, минимальном **Мин** значениях единичных результатов измерения в пределах выбранной группы **Гуу**, среднем **Средн** значении твердости, среднем квадратичном отклонении **СКО**, а также размерности для данной группы.

Для возврата в измерительный режим необходимо соответствующее количество раз нажать кнопку «РЕЖИМ».

3.7 Очистка памяти прибора от записанных результатов измерений

Очистка памяти преобразователя производится в соответствии с п. 3.1.4.5.

3.8 Проведение допускового контроля

В процессе проведения работы прибор позволяет производить сравнение результатов измерения - среднего **Нср** и единичного **Нед** значений твердости с заданными верхним **Нв** и нижним **Нн** допусками.

Верхний и нижний допуски могут задаваться раздельно и вместе в соответствии с п.п. 3.1.4.7 и 3.1.4.8.

В случае если **Hcp** > **Hb** или **Hcp** < **Hh** то среднее значение твердости выводится на индикатор в инверсном виде.

Аналогично, если **Нед** > **Нв** или **Нед** < **Нн** то единичное значение твердости выводится на индикатор в инверсном виде.

3.9 Просмотр статистических результатов в пределах выборки вычисления среднего при проведении измерений твердости

В процессе проведения измерений прибор вычисляет среднее значение твердости **Hcp** по **nn** результатам единичных измерений. **Hcp** и **nn** отображаются на индикаторе.

При нажатии и на кнопку «CTAT» и ее удержании на индикатор выдается сообщение

СТАТИСТИКА				
Макс Мин Средн СКО ст	125 97 109 11 ал ь K2	HB HB HB		

о максимальном **Макс**, минимальном **Мин** значениях единичных результатов измерения в пределах выбранной группы **Гуу**, среднем **Средн** значении твердости, среднем квадратичном отклонении **СКО**, а также размерности для данной группы. Информация выводится в течении времени удержания кнопки «**СТАТ**».

3.10 Выключение прибора

Выключение прибора производится автоматически:

- с одновременным длинным звуковым сигналом, если к прибору подключен преобразователь и в течение 3-х минут не производились измерения и не использовалась клавиатура прибора;

- через 12 секунд, если преобразователь не подключен и при этом не производится никаких действий с клавиатурой.

Прибор выключается с сохранением:

- в памяти прибора записанных результатов измерения и Ncp;
- в памяти преобразователя режимов и параметров проведения измерений.

3.11 Рекомендации по проведению измерений твердости изделий из высоколегированных сталей, чугунов, цветных металлов

3.11.1 Общие сведения

В основу принципа работы прибора заложен динамический способ измерения твердости. На результаты измерений влияют не только свойства металла при пластической деформации, но и модуль Юнга (модуль упругости). Для устранения дополнительной погрешности от необходимо группу модуля Юнга выбрать материалов соответствующей шкалы твердости по таблице п.1.2.1.2 используя преобразователя п.3.1.4.1. Если для используемого указания необходимой группы материалов, то необходимо проводить коррекцию пользовательских калибровок прибора.

Для определения наличия дополнительной погрешности необходимо сравнить результаты измерений прибором с результатами прямых измерений твердомером статического принципа измерения. Если разница результатов не превышает основной погрешности прибора, то это проводить измерения ОНЖОМ ПО характеристикам, означает, ЧТО память преобразователя при поставке. Если разница записанным в требуемую, превышает TO необходимо результатов одноточечную корректировку пользовательской ИЛИ калибровки прибора на изделиях или образцах.

3.11.2 Требования к образцам для корректировки пользовательских калибровок прибора при измерениях твердости изделий из высоколегированных сталей, чугунов, цветных металлов

- **3.11.2.3** Образцы должны быть изготовлены в соответствии с ГОСТ9031-75 с ограничениями:
 - чистота, Ra, рабочей поверхности, мкм, не более 0,8;

- в случае изготовления образцов толщиной менее 10 мм и массой менее 3 кг опорная поверхность образцов должна быть плоскошлифованной (подробнее см. п. 3.12 «проведение измерений твердости легких и тонких образцов»);
 - размах значений твердости по поверхности согласно ГОСТ9031-75.
- в случае изготовления образцов толщиной менее 10 мм и массой менее 1 кг опорная поверхность образцов должна быть плоскошлифованной (подробнее см. п. 3.12 «проведение измерений твердости легких и тонких образцов»);
 - размах значений твердости по поверхности согласно ГОСТ9031-75.

3.12 Рекомендации по проведению измерений твердости легких и тонких образцов

В случае если изделие или мера твердости не удовлетворяют требованиям п.1.2.2.1 (масса) и (или) п.1.2.2.2 (толщина), то при проведении измерений может возникнуть дополнительная погрешность. Она будет тем больше, чем больше отклонение от указанных требований. Знак дополнительной погрешности может быть как положительный, так и отрицательный в зависимости от конкретных условий.

Причиной появления дополнительной погрешности является возникновение паразитных колебаний точки соприкосновения индентора с изделием в момент измерения. Это происходит из-за колебаний всего изделия, в случае если его масса мала, либо из-за прогиба изделия, если мала его толщина.

Для определения наличия дополнительной погрешности необходимо сравнить результаты приборных измерений с результатами прямых измерений твердомером статического принципа измерения.

В случае наличия дополнительной погрешности устранить ее можно тремя способами:

Первый способ – произвести одноточечную или двухточечную коррекцию пользовательской калибровки на образцах изделий. Данный способ следует применять, если дополнительная погрешность не более 15% от измеряемого значения твердости;

Второй способ — устранение паразитных колебаний путем зажатия изделия в тиски (масса тисков должна быть заведомо больше массы указанной в п.1.2.2.1). Для предотвращения повреждения изделия допускается применение накладных губок на тиски из более мягкого металла;

Третий способ - устранение паразитных колебаний путем притирания изделия к массивной шлифованной плите. Плита должна иметь

шероховатость Ra не более 0,4 мкм, массу, заведомо большую указанной в п.1.2.2.1, неплоскостность не более 0,005 мм, модуль Юнга близкий к Юнга изделия. Нижняя изделия часть должна плоскошлифованной с шероховатостью Ra не более 0.4MKM неплоскостностью не более 0,005 мм. Для установки изделия на опорную поверхность плиты наносят тонкий слой смазки ЦИАТИМ-221 по ГОСТ 9433 или УТ (консталин) по ГОСТ 1957. Изделие притирают к поверхности плиты таким образом, чтобы между поверхностями изделия и плиты не было даже воздушных промежутков. Притирать необходимо плотно, чтобы изделие И плита образовали монолитную массу.

3.13 Рекомендации по проведению измерений твердости упрочненных поверхностных слоев и гальванических покрытий

В зависимости от типа применяемого преобразователя и от твердости изделия на его поверхности образуются отпечатки различной глубины. Рекомендуется измерять твердость упрочняющих слоев и гальванических покрытий, толщина которых превышает более чем в пять раз глубину отпечатка соответствующего преобразователя (см. п. 1.2.2.8).

3.14 Влияние на результаты измерений свойств поверхностных слоев изделия

По причинам, указанным в предыдущем пункте, на результаты измерений влияют свойства поверхностного слоя, Т.К. глубина проникновения индентора в материал изделий существенно меньше, чем при измерениях приборами статического типа по Бринеллю и Роквеллу. Это может привести к несовпадению результатов измерений в случае наличия наклепа, обезуглероженного слоя, шлифовочных прижогов, мартенситных пятен.

Наклеп может образовываться в поверхностном слое после токарной и фрезерной обработки, а также грубой шлифовки. Разница в твердости поверхностного слоя и сердцевины тем больше, чем мягче металл.

Обезуглероженный слой с пониженной твердостью образуется в результате высокотемпературной термической обработки. Это может быть закалка, нормализация, горячий прокат, ковка и т.д. Толщина этого слоя обычно не превышает 0,2 мм. Его легко определить прибором.

Шлифовочные прижоги образуются при нарушении режимов шлифовки упрочненных изделий. При этом поверхностный слой отжигается, что приводит к снижению его твердости.

При термообработке сталей с хорошей прокаливаемостью на среднюю твердость в результате перегрева поверхности могут возникать пятна мартенсита с повышенной твердостью.

Все это следует учитывать при проведении измерений.

3.15 Работа с компьютером ІВМ РС

Записанные в память прибора результаты измерений можно передать в компьютер по каналу связи USB если на нем установлена операционная система WINDOWS 9x/Me/NT/2000/XP.

В комплект программного обеспечения, поставляемого с прибором входят:

- драйвер канала связи СР2101;
- программа Constanta-data.

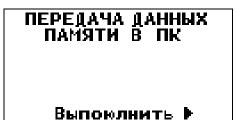
3.15.1 Установка программы на жесткий диск

- установить драйвер USB – канала связи CP2101;

Установка драйвера СР2101

При первом подключении:

- 1. Вставьте диск, прилагаемый к Вашему прибору.
- 2. Запустите с него программу установки драйвера setup.exe, находящуюся в папке CP2102.
- 3. Высветится окно выбора место установки драйвера. Если предложенное в окне место устраивает, нажать мышью на Instal. Если нужно выбрать другое место установки, то необходимо воспользоваться кнопкой Browse. Для отмены установки нажмите Cancel.
- 4. Необходимо проверить установку драйвера. Для этого подключите прибор «Константа Т» к USB порту компьютера с помощью прилагаемого к нему соединительного кабеля. Откройте диспетчер устройств. В русифицированной версии Win XP:


Пуск -> Панель управления -> система -> оборудование -> диспетчер устройств (для Win XP).

В ветке Порты должен появиться СОМ порт CP2102 USB to UART Bridge Controllerc автоматически назначенным номером. Для работы программы необходимо, чтобы номер СОМ-порта был от 1 до 4. Если это не так, то необходимо вручную переназначить его номер.

- установить программу Constanta-data, для чего запустить программу инсталляции setup.exe находящуюся в папке Constanta-data диска, прилагаемого к Вашему прибору. Далее следовать указаниям программы.

3.15.2 Передача результатов измерений в компьютер

- соединить кабелем USB разъемы прибора и компьютера;
- включить прибор и нажатием кнопки «**РЕЖИМ**» выбрать режим передачи результатов из памяти прибора

на компьютере запустить двойным щелчком левой кнопки мыши по пиктограмме программы на рабочем столе WINDOWS, либо из меню – ПУСК \rightarrow ПРОГРАММЫ \rightarrow (название Вашей папки, где находится программа) \rightarrow Constanta-Data;

- выберите тип прибора «Константа Т»;
- для приема данных из прибора выберите «Принять данные». Использование других сервисных функций программы производится в соответствии с указаниями программы и файла справки;
- передача данных из прибора нажать кнопку на клавиатуре прибора, после чего последовательно появятся два сообщения

Идет передача...

И

Передача завершена

На экране компьютера также появится сообщение об окончании передачи данных, после чего появится протокол измерений.

4 Техническое обслуживание

4.1 Общие указания

Техническое обслуживание прибора производится изготовителем в случае обнаружения неисправностей в работе.

4.2 Техническое обслуживание преобразователя

Один раз в три месяца, а также в случае появления нестабильности показаний прибора необходимо производить профилактическую работу. Открутив опорную сменную насадку извлечь из преобразователя боек. Очистить боек от металлических опилок, скапливающихся на корпусе бойка напротив встроенного в него магнита. Очистить скользящие поверхности бойка от налипшей грязи. В случае, если на инденторе налипла грязь или металлические опилки аккуратно очистить индентор. Методом постукивания вытряхнуть грязь из трубки преобразователя, которая могла в нее попасть. С помощью плотной ткани одетой на твердый предмет прочистить трубку. Делать это надо осторожно, не повредив пружину.

4.3 Указания мер безопасности

Питание прибора осуществляется от двух батарей элементов ААА.

4.4 Указания по поверке

Поверка прибора производится в соответствии с Методикой поверки УАЛТ.171.000.00 МП.Периодичность поверки 1 раз в год.

5 Ресурсы, сроки службы и хранения, гарантия изготовителя

- 5.1 Срок службы прибора не менее 5 лет.
- **5.2** Изготовитель гарантирует соответствие прибора требованиям технических условий при соблюдении потребителем условий транспортирования, хранения, и эксплуатации.
 - **5.3** Гарантийный срок эксплуатации со дня отправки потребителю: блока обработки информации 36 месяцев; преобразователя— 12 месяцев.

6 Хранение

- **6.1** Прибор должен храниться при температуре окружающего воздуха от плюс 5 до плюс 40°С и относительной влажности до 80% при температуре 25°С.
- 6.2 В помещении для хранения не должно быть пыли, паров кислот, щелочей и агрессивных газов.

7 Транспортирование

- **7.1** Транспортирование прибора в футляре может производиться любым видом транспорта в соответствии с требованиями и правилами перевозки, действующими на данных видах транспорта.
- 7.2 При транспортировании, погрузке и хранении на складе прибор должен оберегаться от ударов, толчков и воздействия влаги.

8 Свидетельство о приемке		
Твердомер Константа ТД №	толем	овлен и принят в
соответствии с обязательными	требованиями	государственных
стандартов, действующей технической	документацией	и признан годным
для эксплуатации.		
Начальник ОТК		
Дата	МΠ	
ПОДПИСЬ:		
Поверитель		
Дата	МΠ	
ПОДПИСЬ:		

УТВЕРЖДАЮ

Руководитель ГЦИ СИ,

И.о. Заместителентеревыного директора от угразвицию ТРИ"

ти Разанинов Дойников Оди

Твердомер портативный динамический «Константа ТД»

МЕТОДИКА ПОВЕРКИ

УАЛТ.171.000.09 МП

Настоящая методика поверки распространяется на твердомер КОНСТАНТА ТД общего назначения, в дальнейшем - прибор, и устанавливает методику его первичной и периодической поверок.

Периодичность поверки - один раз в год.

1 Операции поверки

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1

	Номер	Обязательно	ия операций при	
Наименование операций	пункта методики поверки	Выпуске из производства	Выпуске после ремонта	Эксплуатации и хранении
Внешний осмотр	5.1	да	да	да
Опробование	5.3	да	да	да
Определение	5.4			
диапазона		да	да	да
измерения				
Определение	5.5			
основной		да	да	да
погрешности				

1.2 В случае получения отрицательного результата при проведении одной из операции поверку прекращают, а прибор признают не прошедшим поверку.

2 Средства поверки

- **2.1** При проведении поверки должны быть применены средства, указанные в таблице 2.
- **2.2** Средства поверки, указанные в таблице 2, должны быть поверены в соответствии с ПР 50.2.006-94.

Таблица 2

		Наименование		образцового		средства
Номер	пункта	измерения	ИЛИ	вспомогател	ьного	средства
методически	IX	поверки;		номер	Д	окумента,
указаний		регламентирующего технические требования к				
		средству, метрологические характеристики				
5.2-5.5		Комплект мер твердости эталонных, разряд 2				
		ΓΟCT 9031-	-75			

3 Требования безопасности

Питание прибора осуществляется от двух сухих элементов типа ААА.

4 Условия поверки

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха от плюс 15 до плюс 25°C;
- относительная влажность от 40 до 80%;
- атмосферное давление от 96 до 104 кРа;
- напряжение питания батареи сухих элементов (3±0,5)В.

5 Проведение поверки

5.1 Внешний осмотр

При внешнем осмотре устанавливается соответствие прибора техническим условиям в части:

- внешнего вида прибора;
- отсутствия царапин, задиров и механических повреждений на поверхностях;
 - комплектности;
 - маркировки.

5.2 Подготовка прибора к работе

- **5.2.1** Притирочную плиту с мерами твердости эталонными установить на столе, конструкция которого должна обеспечивать защиту от воздействия вибраций, передаваемых через стены и пол здания.
- **5.2.2** Рабочие поверхности мер твердости эталонных и наконечника индентора должны быть чистыми и обезжирены спиртом.
- **5.2.3** Меры твердости эталонные МТБ, МТР и МТВ второго разряда по ГОСТ 9031-75 должны устанавливаться на притирочную плиту. Для установки на притирочную плиту меры твердости эталонной на ее опорную поверхность наносят тонкий слой смазки ЦИАТИМ-221 по ГОСТ 9433 или УТ (консталин) по ГОСТ 1957. Меру твердости

эталонную притирают к поверхности плиты таким образом, чтобы между поверхностями меры и плиты не было воздушных прослоек. Притирать необходимо достаточно плотно, чтобы мера и плита образовали единую монолитную массу.

5.3 Опробование

- **5.3.1** Подключить преобразователь к разъему на верхней панели блока обработки информации.
 - 5.3.2 Установить два сухих элемента типа ААА в батарейный отсек.
- **5.3.3** Включить прибор нажатием кнопки «РЕЖИМ/ВКЛ». После нажатия данной кнопки раздается короткий звуковой сигнал и на индикатор выдается сообщение

Константа Т ver.6.6.0

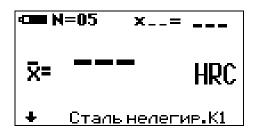
Далее на индикатор выдается сообщение о расположении информации на индикаторе при проведении измерений

Среднее – местоположение текущего среднего значения твердости по **nn** измерений, число которых также отображается на индикаторе;

N=XX — число, ограничивающее количество усредняемых значений, устанавливается в соответствующем меню;

хпп – номер последнего (единичного) результата измерения твердости.

Единичное - местоположение последнего (единичного) результата измерения твердости;


Шкала — местоположение названия шкалы измерения (выводится сообщение о выбранной шкале измерения: **HRC** (по Роквеллу), **HB** (по Бринеллю) или **HV** (по Виккерсу) или другим шкалам);

Материал – группа металлов и номер пользовательской калибровки для выбранной шкалы, сохраняемой в памяти (может быть от К1 до К3). При

поставке пользовательские калибровки К1 – К3 соответствуют градуировочным характеристикам выбранной шкалы.

 \downarrow – угол наклона преобразователя относительно вертикали.

После выдачи указанных выше информационных сообщений прибор готов к измерениям и на индикатор будет выдано сообщение

с соответствующими шкалой измерения, группой металлов, номером пользовательской калибровки и числом, ограничивающим количество усредняемых значений, установленными при поставке (при первом включении) или при выключении прибора после проведения измерений.

5.4 Определение диапазона измерения

- 5.4.1 Подготовить прибор к работе в соответствии с пунктами 5.2-5.3.
- 5.4.2 Выбрать требуемую шкалу единиц измерения твердости.

Для выбора шкалы измерений необходимо нажать кнопку «ШКАЛА», после чего на индикатор будет выдано сообщение

Курсор ▶ указывает на выбранные шкалу, группу металлов и номер пользовательской калибровки. С использованием кнопок пользовательской выбрать необходимую шкалу с любым номером пользовательской калибровки. После выбора шкалы измерений (указывается курсором ▶) для возврата в измерительный режим необходимо вновь нажать кнопку «ШКАЛА».

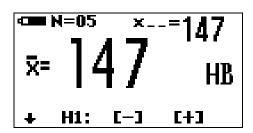
5.4.3 Вернуться к исходной градуировочной характеристике, снятой на мерах твердости эталонных для выбранной шкалы измерения - в измерительном режиме нажать вместе кнопки «**H1**» и «**H2**» сектора "**КАЛИБРОВКА**" и удерживать до появления сообщения

Сброс калибровки возврат к заводской

- **5.4.4** Провести измерения на мерах твердости эталонных с минимальным и максимальным значениями твердости, выбранной в соответствии с таблицей 3, для чего:
- преобразователь установить меру твердости на нормально К поверхности прижать торцевой плоскостью, его допуская И не покачивания;
- взвести пружинный механизм преобразователя в рабочее положение, для чего:
- а) Для преобразователей D, D+15, G, C, DL: Сдвинуть цилиндрическую ручку вниз до щелчка, свидетельствующего о захвате бойка захватным механизмом. Плавно отпустить цилиндрическую ручку, не допуская срыва бойка.
- б) Для преобразователя DC: Вставить взводной стержень (поставляемый в комплекте с преобразователем DC) в отверстие на торцевой части преобразователя до щелчка, свидетельствующего о захвате бойка захватным механизмом. Плавно вынуть взводной стержень.
- нажать спусковую кнопку преобразователя, при этом боек совершит удар по поверхности меры.

При нажатии спусковой кнопки цилиндрическая ручка взвода бойка не должна перемещаться вниз.

Прибор произведет измерение и отобразит значение твердости на индикаторе. Данный результат измерения будет отображаться на индикаторе до проведения следующего измерения.


Таблица 3

Шкала	Диапазон	Мера твердости эталонная
измерения	измерения	
По Роквеллу	HRC 2070	HRC 25±5; HRC 45±5;
		HRC 65±5.
По Бринеллю	HB 95450	HB 100±25; HB 200±50;
		HB 400±50
По Виккерсу	HV 240940	HV 450±75;
		HV 800±50

Появление показаний на индикаторе свидетельствует о работоспособности прибора. Выполнить данный пункт для всех шкал, предварительно выбрав каждую из них в соответствии с пунктом 5.4.2.

5.5 Определение основной погрешности

- 5.5.1 Подготовить прибор к работе в соответствии с пунктами 5.2-5.3.
- **5.5.2** Выполнить двухточечную коррекцию выбранной пользовательской калибровки на мерах твердости эталонных с минимальным и максимальным значениями следующим образом:
- **5.5.2.1** Произвести коррекцию пользовательской калибровки на мере эталонной с минимальным значением твердости **Hэmin** следующим образом:
- произвести измерение твердости **Нпр** с усреднением с числом замеров не менее 5;
- нажать кнопку «**H1**» сектора «**КАЛИБРОВКА**», при этом на индикатор будет выдано сообщение о вычисленном **Нпр** и назначении кнопок **◄** и **▶**.

- с использованием кнопок погрешностью, не превышающей требуемую. При нажатии и удержании в этом положении кнопки показания на индикаторе будут

увеличиваться, а при нажатии и удержании в этом положении кнопки п- уменьшаться.

- нажать на кнопку «**H1**» для возврата в измерительный режим. Для возврата в измерительный режим также достаточно просто произвести измерение.
- **5.5.2.2** Произвести коррекцию пользовательской калибровки на мере твердости эталонной с максимальным значением твердости **Нэтах** следующим образом:
- произвести измерение твердости **Нпр** с усреднением с числом замеров не менее 5;
- нажать кнопку **«Н2»** сектора **«КАЛИБРОВКА»**, при этом на индикатор будет выдано сообщение о вычисленном **Нпр** и назначении кнопок **◄** и **▶**

- нажать на кнопку «**H2**» для возврата в измерительный режим. Для возврата в измерительный режим также достаточно просто произвести измерение.
- **5.5.3** После того, как осуществлена двухточечная корректировка пользовательской калибровки, можно приступить к измерениям
- **5.5.4** Произвести измерения мер твердости эталонных, используя для измерений меры, выбранные в соответствии с таблицей 3 для каждой из шкал. Измерения проводить с усреднением в соответствии с п. 3.3.2 руководства по эксплуатации.
- **5.5.5** Измерения каждой из мер твердости эталонной $H_{\mathfrak{I}}(i)$ проводить не менее трех раз с усреднением с числом замеров i = 5, после чего определить среднее арифметическое из трех измерений:

$Hep = {H1(i5) + H2(i5) + H3(i5)}/3$

и определить основную погрешность по формуле:

Δ =**Hcp-H**э, где

 $\langle\!\langle \Delta \rangle\!\rangle$ - основная погрешность;

«Нэ»- значение меры твердости эталонной по аттестату.

Основная погрешность не должна превышать значений, указанных в руководстве по эксплуатации.

Пункт 5.5.4 выполняется для основных шкал, после предварительного выбора каждой из них в соответствии с пунктом 5.4.2.

5.6 Оформление результатов поверки

- **5.6.1** Положительные результаты первичной поверки прибора оформляются отметкой в руководстве по эксплуатации, заверенной подписью поверителя.
- **5.6.2** На приборы, признанные годными при периодической поверке, выдают свидетельства о поверке по установленной форме.
- **5.6.3** Приборы, не соответствующие требованиям технической документации, к применению не допускаются, выдается извещение о непригодности с указанием причины.